Week 4: Applied Financial Data Analysis with Python

Topics Covered:

Core Resources:

Weekly Assignment :

Due Date: End of Week 4

Part 1: PEAD Replication

  1. Data Preparation
    • Download and clean required data
    • Implement proper data quality checks
    • Document data sources and date ranges
  2. Core Analysis
    • Implement PEAD calculation following WRDS example
    • Calculate abnormal returns
    • Form portfolios based on earnings surprises
  3. Results & Validation
    • Compare your results with original findings
    • Document any discrepancies
    • Provide clear visualizations

Part 2: Extended Analysis

  1. Updated Data Analysis
    • Update through 2024
    • Test in different market conditions
  2. Robustness Tests
    • Different portfolio formation methods
    • Various event windows
    • Market condition analysis

Bonus: AI Integration

Optional Enhancement: Use AI tools to enhance your analysis
  1. AI-Powered Analysis
    • Data validation using AI tools
    • Pattern recognition
    • Anomaly detection
  2. AI Insights
    • Generate additional insights
    • Compare AI findings with traditional analysis
    • Document AI tool effectiveness

Implementation Guide:

1. Data Preparation

# Example data retrieval and preparation
import pandas as pd
import numpy as np
from pandasai import SmartDataframe

# Load and prepare data
earnings_data = pd.read_csv('earnings_data.csv')
market_data = pd.read_csv('market_data.csv')

# Basic quality checks
def basic_quality_checks(df):
    print("Missing values:", df.isnull().sum())
    print("Duplicates:", df.duplicated().sum())
    print("Date range:", df['date'].min(), "to", df['date'].max())

2. PEAD Analysis

# Core PEAD calculation
def calculate_car(data, event_window=(-2, 2)):
    """Calculate Cumulative Abnormal Returns"""
    # Follow WRDS implementation
    pass

def form_portfolios(data, n_portfolios=10):
    """Form portfolios based on earnings surprise"""
    # Follow WRDS implementation
    pass

3. AI Enhancement

# Optional AI analysis
from pandasai.llm import Ollama

# Initialize AI assistant
llm = Ollama(model="llama2")
df_smart = SmartDataframe(your_pead_results, config={'llm': llm})

# Example AI analysis
analysis = df_smart.chat("Analyze the PEAD patterns")

Submission Requirements:

  1. Code Files
    • Well-documented Python scripts
    • Clear comments explaining each step
    • Requirements.txt file
  2. Analysis Report
    • Data preparation steps
    • Implementation details
    • Results and comparisons
    • AI-enhanced insights (if used)
  3. Presentation
    • Key findings visualization
    • Comparison with original study
    • Discussion of challenges

Best Practices:

← Previous Week | Next Week →
← Back to Home