Learn how to create professional financial charts and visualizations using matplotlib and seaborn. Master the art of communicating financial insights through effective data visualization.
Creating fundamental financial charts using matplotlib.
import matplotlib.pyplot as plt import yfinance as yf import pandas as pd # Download stock data aapl = yf.download('AAPL', start='2023-01-01', end='2023-12-31') # Create a price chart plt.figure(figsize=(12, 6)) plt.plot(aapl.index, aapl['Adj Close'], label='AAPL') plt.title('Apple Stock Price (2023)') plt.xlabel('Date') plt.ylabel('Price ($)') plt.legend() plt.grid(True) plt.show() # Create volume bars plt.figure(figsize=(12, 6)) plt.bar(aapl.index, aapl['Volume'], alpha=0.5) plt.title('Trading Volume') plt.xlabel('Date') plt.ylabel('Volume') plt.show()
📚 Can't access the link? Use Perplexity.ai and search for "matplotlib financial charts tutorial"
Creating statistical visualizations for financial analysis.
import seaborn as sns # Calculate daily returns returns = aapl['Adj Close'].pct_change() # Create a distribution plot plt.figure(figsize=(10, 6)) sns.histplot(returns.dropna(), kde=True) plt.title('Distribution of Daily Returns') plt.xlabel('Returns') plt.show() # Create a correlation heatmap portfolio = yf.download(['AAPL', 'MSFT', 'GOOGL'], start='2023-01-01', end='2023-12-31')['Adj Close'] corr = portfolio.corr() plt.figure(figsize=(8, 6)) sns.heatmap(corr, annot=True, cmap='coolwarm') plt.title('Correlation Matrix') plt.show()
Creating technical analysis visualizations.
# Calculate moving averages aapl['MA50'] = aapl['Adj Close'].rolling(window=50).mean() aapl['MA200'] = aapl['Adj Close'].rolling(window=200).mean() # Create technical analysis chart plt.figure(figsize=(12, 6)) plt.plot(aapl.index, aapl['Adj Close'], label='Price') plt.plot(aapl.index, aapl['MA50'], label='50-day MA') plt.plot(aapl.index, aapl['MA200'], label='200-day MA') plt.title('Technical Analysis Chart') plt.xlabel('Date') plt.ylabel('Price ($)') plt.legend() plt.grid(True) plt.show()
Use these prompts to enhance your learning: