Learn how to create professional financial charts and visualizations using matplotlib and seaborn. Master the art of communicating financial insights through effective data visualization.
Creating fundamental financial charts using matplotlib.
import matplotlib.pyplot as plt
import yfinance as yf
import pandas as pd
# Download stock data
aapl = yf.download('AAPL', start='2023-01-01', end='2023-12-31')
# Create a price chart
plt.figure(figsize=(12, 6))
plt.plot(aapl.index, aapl['Adj Close'], label='AAPL')
plt.title('Apple Stock Price (2023)')
plt.xlabel('Date')
plt.ylabel('Price ($)')
plt.legend()
plt.grid(True)
plt.show()
# Create volume bars
plt.figure(figsize=(12, 6))
plt.bar(aapl.index, aapl['Volume'], alpha=0.5)
plt.title('Trading Volume')
plt.xlabel('Date')
plt.ylabel('Volume')
plt.show()
📚 Can't access the link? Use Perplexity.ai and search for "matplotlib financial charts tutorial"
Creating statistical visualizations for financial analysis.
import seaborn as sns
# Calculate daily returns
returns = aapl['Adj Close'].pct_change()
# Create a distribution plot
plt.figure(figsize=(10, 6))
sns.histplot(returns.dropna(), kde=True)
plt.title('Distribution of Daily Returns')
plt.xlabel('Returns')
plt.show()
# Create a correlation heatmap
portfolio = yf.download(['AAPL', 'MSFT', 'GOOGL'],
start='2023-01-01',
end='2023-12-31')['Adj Close']
corr = portfolio.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
Creating technical analysis visualizations.
# Calculate moving averages
aapl['MA50'] = aapl['Adj Close'].rolling(window=50).mean()
aapl['MA200'] = aapl['Adj Close'].rolling(window=200).mean()
# Create technical analysis chart
plt.figure(figsize=(12, 6))
plt.plot(aapl.index, aapl['Adj Close'], label='Price')
plt.plot(aapl.index, aapl['MA50'], label='50-day MA')
plt.plot(aapl.index, aapl['MA200'], label='200-day MA')
plt.title('Technical Analysis Chart')
plt.xlabel('Date')
plt.ylabel('Price ($)')
plt.legend()
plt.grid(True)
plt.show()
Use these prompts to enhance your learning: